
Implementation of Low Complex and High
Secured SPI Communication System for

Multipurpose Applications

M.Jyothi, L.Ravi Chandra, M.Sahithi,A.Jhansi Rani,J.Poornima,N.Naga Sudha
Department of ECE, K L University

Vijayawada, INDIA

Abstract—The main objective of this project is to
implement a full duplex SPI (serial peripheral interfacing
system) with low complexity and high security algorithms.
High security is achieved by encoding the data with S.E.A
(scalable encryption algorithms) along with that, error
checking capability is also provided by adding even parity.

Key words— SPI, SEA, error checking.

I. INTRODUCTION
Today at the low end of the communication protocols
we find two world wide protocols: I2C, SPI both
protocols are well suited for communications between
integrated circuits for low/medium data transfer speed
with on-board peripherals. The two protocols coexist in
modern digital electronic systems, and they probably
will continue to complete in the future, as they both I2C
and SPI are actually quite complimentary for this kind
of communication. SPI plays virtual role in way of
communications. But no security is provided and no
error checking is provided for that communication
protocol. We need such protocol for efficient and
secured communication.
The Serial Peripheral Interface Bus or SPI bus is a
synchronous serial data link standard named by
Motorola that operates in full duplex mode. Devices
communicate in master/slave mode where the master
device initiates the data frame. Multiple slave devices
are allowed with individual slave select (chip select)
lines. Sometimes SPI is called a "four-wire" serial bus.

II.SPI COMMUNICATION

Four logic signals are necessary to connect 2 or more
devices with SPI:
- SCLK- Serial Clock (output from master)
- MOSI / SIMO - Master Out Slave In (output from
master).
- MISO / SOMI - Master In Slave Out (output from
slave)
- SS - Slave Select (active low, output from master).
The SPI bus can operate with a single master device and
with one or more slave devices. If a single slave device
is used, the SS pin may be fixed to logic low if the slave
permits it. Some slaves require the falling edge (high to
low transition) of the chip select to initiate an action
such as the Maxim MAX1242 ADC, which starts
conversion on said transition. With multiple slave
devices, an independent SS signal is required from the
master for each slave device. Most slave devices have
tri-state outputs so their MISO signal becomes high
impedance ("disconnected") when the device is not
selected. Devices without tri-state outputs can't share

SPI bus segments with other devices; only one such
slave could talk to the master, and only its chip select
could be activated.

Fig. 1. The SPI Bus system with 1 master device and
with 3 slave devices

Form the above diagram, we can justify that, data can be
passed from one master to multiple slaves depends on
activation of slave selection signal. Full duplex

communication is in existence till now.
If there is only one slave device then the SS pin on the
slave device can be fixed to logic low state. If there is 2
or more slave devices in the system, then an
independent SS signal is required from the master
device for each slave device. When the master device
wants to start a communication it has to set the clocks,
that is less than or equal to the slave device's maximum
frequency (most commonly from 1 to a few MHz). SPI
communication is a full duplex communication, the
master device sends a byte to the desired slave device in
the meantime it receives a byte from the slave device.
Transmissions may involve any number of clock cycles.
When there are no more data to be transmitted, the
master device stops toggling its clock. Normally, it then
deselects the slave device. Every slave device on the bus
that hasn't been activated using its Slave Select line
must disregard the input clock and MOSI signals, and
may not drive MISO. The master device selects only
one slave at a time.
In addition to setting the clock frequency, the master
must also configure the clock polarity and phase with

M.Jyothi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012,3214-3219

3214

respect to the data. Free scale’s SPI Block Guide names
these two options as CPOL and CPHA respectively, and
most vendors have adopted that convention.
The timing diagram is shown to the right. The timing is
further described below and applies to both the master
and the slave device.
-At CPOL=0 the base value of the clock is zero.
For CPHA=0, data are captured on the clock's rising
edge (low to high transition) and data are propagated on
a falling edge (high to low clock transition). For
CPHA=1, data are captured on the clock's falling edge
and data are propagated on a rising edge.
-At CPOL=1 the base value of the clock is one
(inversion of CPOL=0)
For CPHA=0, data are captured on clock's falling edge
and data are propagated on a rising edge. For CPHA=1,
data are captured on clock's rising edge and data are
propagated on a falling edge. That is, CPHA=0 means
sample on the leading (first) clock edge, while CPHA=1
means sample on the trailing (second) clock edge,
regardless of whether that clock edge is rising or falling.
Note that with CPHA=0, the data must be stable for a
half cycle before the first clock cycle. For all CPOL and
CPHA modes, the initial clock value must be stable
before the chip select line goes active. Also, note that
"data is read" in this document more typically means
"data may be read". The MOSI and MISO signals are
usually stable (at their reception points) for the half
cycle until the next clock transition. SPI master and
slave devices may well sample data at different points in
that half cycle. This adds more flexibility to the
communication channel between the master and slave.

Fig.2. Clock dependencies from CPHA and CPOL

Fig. 3. CPOL and CPHA setup table

Some devices even have minor variances from the
CPOL/CPHA modes described above. Sending data
from slave to master may use the opposite clock edge as
master to slave. Devices often require extra clock idle
time before the first clock or after the last one, or
between a command and its response. Some devices

have two clocks, one to "capture" or "display" data, and
another to clock it into the device. Many of these
"capture clocks" run from the chip select line.
Some devices require an additional flow control signal
from slave to master, indicating when data are ready.
This leads to a "five wire" protocol instead of the usual
four. Such a "ready" or "enable" signal is often active-
low, and needs to be enabled at key points such as after
commands or between words. Without such a signal,
data transfer rates may need to be slowed down
significantly, or protocols may need to have "dummy
bytes" inserted, to accommodate the worst case for the
slave response time. Examples include initiating an
ADC conversion, addressing the right page of flash
memory, and processing enough of a command that
device firmware can load the first word of the response.
(Many SPI masters don't support that signal directly,
and instead rely on fixed delays.)
Many SPI chips only support messages that are
multiples of 8 bits. Such chips cannot interoperate with
the JTAG or SGPIO protocols, or any other protocol
that requires messages that are not multiples of 8 bits.

III.PROPOSED MODEL

Fig.4.Low Complex and High Secure SPI

Communication

In the above block diagram, Full-duplex communication
is established between single master and multi slave
devices with more security. For security purpose, S.E.A
(Scalable Encryption algorithm) is utilized. Error
checking is also main criteria while sending data from
one point to another. Here, even parity generations are
used for error checking purpose.
A. Error detection
In information theory and coding theory with
applications in computer science and telecommunication,
error detection and correction or error control are
techniques that enable reliable delivery of digital data
over unreliable communication channels. Many
communication channels are subject to channel noise,
and thus errors may be introduced during transmission
from the source to a receiver. Error detection techniques
allow detecting such errors, while error correction
enables reconstruction of the original data. The general
definitions of the terms are as follows:
Error detection is the detection of errors caused by noise
or other impairments during transmission from the

M.Jyothi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012,3214-3219

3215

transmitter to the receiver. Error correction is the
detection of errors and reconstruction of the original,
error-free data.
Error correction may generally be realized in two
different ways:
Automatic Repeat Request (ARQ) (sometimes also
referred to as backward error correction): This is an
error control technique whereby an error detection
scheme is combined with requests for retransmission of
erroneous data. Every block of data received is checked
using the error detection code used, and if the check
fails, retransmission of the data is requested this may be
done repeatedly, until the data can be verified.
Forward Error Correction (FEC): The sender encodes
the data using an error-correcting code (ECC) prior to
transmission. The additional information (redundancy)
added by the code is used by the receiver to recover the
original data. In general, the reconstructed data is what
is deemed the "most likely" original data.
B. Error Detection Schemes
Error detection is most commonly realized using a
suitable hash function (or checksum algorithm). A hash
function adds a fixed-length tag to a message, which
enables receivers to verify the delivered message by
recomputing the tag and comparing it with the one
provided. There exists a vast variety of different hash
function designs. However, some are of particularly
widespread use because of either their simplicity or their
suitability for detecting certain kinds of errors (e.g., the
cyclic redundancy check's performance in detecting
burst errors.
Random-error-correcting codes based on minimum
distance coding can provide a suitable alternative to
hash functions when a strict guarantee on the minimum
number of errors to be detected is desired. Repetition
codes, described below, are special cases of error-
correcting codes: although rather inefficient, they find
applications for both error correction and detection due
to their simplicity.
C. Repetition codes
A repetition code is a coding scheme that repeats the
bits across a channel to achieve error-free
communication. Given a stream of data to be
transmitted, the data is divided into blocks of bits. Each
block is transmitted some predetermined number of
times. For example, to send the bit pattern "1011", the
four-bit block can be repeated three times, thus
producing "1011 1011 1011". However, if this twelve-
bit pattern was received as "1010 1011 1011" – where
the first block is unlike the other two – it can be
determined that an error has occurred.
Repetition codes are not very efficient, and can be
susceptible to problems if the error occurs in exactly the
same place for each group (e.g., "1010 1010 1010" in
the previous example would be detected as correct). The
advantage of repetition codes is that they are extremely
simple, and are in fact used in some transmissions of
numbers stations.
D. Parity Generator
A parity bit is a bit that is added to ensure that the
number of bits with the value one in a set of bits is even
or odd. Parity bits are used as the simplest form of error
detecting code.

There are two variants of parity bits: even parity bit and
odd parity bit. When using even parity, the parity bit is
set to 0 if the number of ones in a given set of bits (not
including the parity bit) is even, making the entire set of
bits (including the parity bit) even. When using odd
parity, the parity bit is set to 0 if the number of ones in a
given set of bits (not including the parity bit) is odd,
keeping the entire set of bits (including the parity bit)
odd. Even parity is a special case of a cyclic redundancy
check (CRC), where the 1-bit CRC is generated by the
polynomial x+1. If the parity bit is present but not used,
it may be referred to as mark parity (when the parity bit
is always 1) or space parity (the bit is always 0).

7 bits of data
(number of 1s)

8 bits including parity

Even odd

0000000 (0) 00000000 10000000

1010001 (3) 11010001 01010001

1101001 (4) 01101001 11101001

1111111 (7) 11111111 01111111

Parity bits are extra signals which are added to a data
word to enable error checking. There are two types of
Parity even and odd. An even parity generator will
produce a logic 1 at its output if the data word contains
an odd number of ones. If the data word contains an
even number of one’s then the output of the parity
generator will be low. By concatenating the Parity bit to
the data word, a word will be formed which always has
an even number of one’s i.e. has even parity.
E. Encryption
Encryption is the conversion of data into a form, called
a cipher text that cannot be easily understood by
unauthorized people. Decryption is the process of
converting encrypted data back into its original form, so
it can be understood. The use of encryption/decryption
is as old as the art of communication. In wartime, a
cipher, often incorrectly called a code, can be employed
to keep the enemy from obtaining the contents of
transmissions. (Technically, a code is a means of
representing a signal without the intent of keeping it
secret; examples are Morse code and ASCII.) Simple
ciphers include the substitution of letters for numbers,
the rotation of letters in the alphabet, and the
"scrambling" of voice signals by inverting the sideband
frequencies. More complex ciphers work according to
sophisticated computer algorithms that rearrange the
data bits in digital signals. In order to easily recover the
contents of an encrypted signal, the correct decryption
key is required. The key is an algorithm that undoes the
work of the encryption algorithm. Alternatively, a
computer can be used in an attempt to break the cipher.
The more complex the encryption algorithm, the more
difficult it becomes to eavesdrop on the communications
without access to the key.
Encryption/decryption is especially important in
wireless communications. This is because wireless
circuits are easier to tap than their hard-wired
counterparts. Nevertheless, encryption/decryption is a
good idea when carrying out any kind of sensitive
transaction, such as a credit card purchase online, or the

M.Jyothi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012,3214-3219

3216

discussion of a company secret between different
departments in the organization. The stronger the cipher
that is, the harder it is for unauthorized people to break
it the better, in general. However, as the strength of
encryption/decryption increases, so does the cost.
F. Decryption
Encryption is the initial message prepared by the sender
is written as plaintext, which the sender converts into
cipher text before the message is transmitted. The
process of converting plaintext into cipher text is called
encryption. The encryption process requires an
encryption algorithm and a key. The process of
recovering plaintext from cipher text is called
decryption.
In classical cryptography, the key is exchanged secretly
between sender and receiver over secured
communication, or through a trusted intermediary. The
accepted view among professional cryptographers it that
the encryption algorithm should be published, whereas
the key must be kept secret. The purpose of publishing
the encryption algorithm is to place it before the
academic cryptography community, which will discover
its flaws. Better that the flaws in the encryption
algorithm be first discovered in academia than when the
message is secretly decoded by the attacker.
Sample encryption calculation is the both the initial
plaintext and the resulting cipher text may contain
words or numbers or both, but is ultimately convertible
into a sequence of numerals, which can be processed by
computer and distributed through public
communications, including the internet. For simplicity
of discussion, we can speak of an initial plaintext
expressed as a sequence of decimal numerals. For
example, let the letters of the alphabet be represented as
two-digit numbers from a=00 to z=25 (ignore blank-
spaces for now). Then the plaintext for the quick brown
fox becomes numeralized as
19070416200802100117142213051423, as follows:
 Thequickbrownfox
 t h e q u i c k b r o w n f o x
 19 07 04 16 20 08 02 10 01 17 14 22 13 05 14 23

analogously, we may form a simple key consisting, say,
of the consecutive letters of the alphabet:
abcdefghijklmnopqrstuvwxyzabcd....
 Abcdefghijklmnopqrs
 a b c d e f g h i j k l m n o p q r s t u....
 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17
18 19 20....

A simple encryption algorithm might consist of adding
the plaintext to the encryption-key, using modulo-26
arithmetic. That is, if the sum of any two numbers
obtained by ordinary addition is 26 or greater, then you
subtract 26 from the ordinary sum to obtain the modulo-
26 sum. Thus, 05+12=17 by both ordinary and modulo-
26 arithmetic, but 15+12=27 by ordinary arithmetic but
15+12=01 by modulo-26 arithmetic. Hence, the cipher
text for thequickbrownfox is
19080619241308170901240725180212, as follows:
 19 07 04 16 20 08 02 10 01 17 14 22 13 05 14 23
 (+) 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
(modulo-26)

 19 08 06 19 24 13 08 17 09 01 24 07 25 18 02 12
The cipher text may then be decrypted by the receiver,
using the decryption-key
azyxwvutsrqponmlkjihgfedcbazyx... and modulo-26
arithmetic, as follows:
 19 08 06 19 24 13 08 17 09 01 24 07 25 18 02 12
 (+) 00 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11
(modulo-26)

 19 07 04 16 20 08 02 10 01 17 14 22 13 05 14 23

It is entirely reverse process to the encryption. Inputs to
the decryption block are received data along with key.
Key should be same as in tx block. Then only cipher
text will be converted in to original plane text.
G. Parity Degeneration
Error detection using parity compensation in binary
coded decimal (BCD) and densely packed decimal
(DPD) conversions, including a computer program
product having a tangible storage medium readable by a
processing circuit and storing instructions for execution
by the processing circuit for performing a method. The
method includes receiving formatted decimal data in a
first format, the formatted decimal data consisting of a
DPD format data or a BCD format data. One or more
first parity bits are generated by converting the received
data into a second format of the formatted decimal data,
and by determining the parity of the data in the second
format. One or more second parity bits are generated
directly from the received data. An error flag is set to
indicate an error in the data in the second format in
response to the first parity bits not being equal to the
second parity bits.
H. Parity check
This is the simplest scheme of error detection. In this
scheme a single parity bit is introduced. This parity bit
is appended at the end of the block of data in such a way
that the block of data contains either even (even parity)
or odd (odd parity) number of ones. for example in case
of even parity consider a block of data to be sent is
10100100 this is a seven bit data a new parity bit will be
appended at the end so that the number of one’s in the
data become even 101001001. Now this data is sent
across the transmission channel and if suppose error
occurs during the transmission and the third bit in the
block become zero (100001001) now this will be
received by the receiver and will detect an error.
However if two or more bits are inverted in such a way
that the number of one’s remain even (e.g. 11001001)
then the error will remain undetected. same is the case
with odd parity in which a parity bit is introduced in
such a way the resulting block of data contain odd
numbers of ones. Typically, even parity is used for
synchronous transmission and odd parity for
asynchronous transmission. This method in not
foolproof, noise impulses are often long and destroy
more than one bit of data.
The parity bit is only an error detection code. The
concept of parity bit has been later on developed and
error detection and correction code has been developed
using more than one parity bits. One such code is
hamming error correcting code.

M.Jyothi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012,3214-3219

3217

Hamming error-correcting code: this code was devised
by Richard hamming at bell laboratories. Let’s
understand this codes with the help of Venn diagrams,
let’s consider 4 bit data. Figure below shows the Venn
diagrams with filled in data bits, which are filled in the
intersecting inner compartments. the next step is to fill
in the parity bits for these four data bit the principle here
is that we add the parity bits such that the total number
of l's in each circle is even (even parity)
please note that each of the circle have even number of
l's.
After the data transfer, let us say, we encounter a
situation where one of the data bit is changed from 1 to
0. Thus, an error has occurred. How will this error be
detected and rectified?
The parity bit of the two circles are indicating error of
one bit, since two circles are indicating errors, therefore,
the error lies at the intersection of these two circle. So,
we have not only recognized the error but also its source.
Thus, in this case by changing the bit in error, from 0 to
1 we can easily rectify the error. Now let us discuss a
scheme for error correction and detection of single bit
errors in 8 bit words. The first question in this respect is:
what should be the length of the code? The error
detection is done by comparing the two input bit error
detection and correction codes fed to the comparison
logic bit by bit. Let us have a comparison logic which
produce a 0 if the compared bits are same or else it
produce a1. Therefore, if similar position bits are same
then we get 0 at that bit position, but if they are different,
that is this bit position may point to some error, then this
particular bit position will be marked as 1. This way a
match word called syndrome word is constructed. This
syndrome word is i bit long, therefore, can represent 2i
values or combinations. for example, a 4 bit syndrome
word can represent 24=16 values which range from 0 to
15 as:
0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111
1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111

the value 0000 or 0 represent no error while the other
values i.e..2i-1 (for 4 bits 24-1=15 that is from 1 to15)
represent an error condition.
The next step in this connection will be to arrange the 8
bit word and its 4 bit error correction code in such a way
that a particular value of the syndrome word specifies an
error in a unique bit (which may be data or error
detection code'). The following arrangement of the
(N+i) bits is suggested.
Bit positions 12 11 10 9 8 7 6 5 4 3 2 1
Data bits 8 7 6 5 4 3 2 1
Correction bits 8 4 2 1
Data bits and bit positions.
The above arrangement is derived on the basis that:
Syndrome Word zero implies no error. If syndrome
word contains only one bit as 1 then it should be
inferred that error has occurred only in the parity bits,
therefore, no correction is needed in data. But how can
we implement it? This can be implemented easily by
assigning the check bits as 1st, 2nd, 4th, and 8th bit
position. In case more than one bit in syndrome word
are set as 1 then the numerical value of the syndrome
word should determine the bit position which is in error.

The arrangement shown in figure above has an added
advantage that is each data bit position can be calculated
as a function of correction bit positions. Please note, in
case any one of the correction bit has changed during
data transmission, that implies any one of the 1st or 2nd
or 4th or 8th bit position data have altered, therefore, the
syndrome bit will be 0001 if the data at first bit position
has changed, 0010 if 2nd bit position has changed; or
0100 if data at 4th bit position has changed, or 1000 if
data at 8th bit position has changed. Thus, the proposed
bit arrangement scheme of figure above satisfies the
second assumption for the bit arrangement scheme. The
next assumption in this regard is the value of syndrome
word should indicate the bit position which is in error,
that is, if there is error in bit position 3 it should change
correction bits of bit position 1 and 2 and so on. Let us
discuss how this can achieve.
For example The SEC code for 8 bit word is of 4 bits

Check bit l =Even parity of(1,1,1,1,1)=1
Check bit 2 =Even parity of(1,0,1,0,1)=1
Check bit 3 =Even parity of(1,0,1,0)=0
Check bit 4 =Even parity of(1,0,1,0)=0

Therefore, the 12 bit word to be transmitted is

Bit Position 12 11 10 9 8 7 6 5 4 3 2 1
Data Bits 8 7 6 5 4 3 2 1
Check Bits 4 3 2 1
Data to be transmitted 0 1 0 1 0 1 0 1 0 1 1 1
Data Received 0 1 0 0 0 1 0 1 0 1 1 1
Error in the 5th data bit
Calculation of check bits of data received:

Check bit 1 = Even parity of(l,1,1,0,1,)=0
Check bit 2 = Even parity of(1,0,1,0,1,)=1
Check bit 3 = Even parity of(1,0,1,0)=0
Check bit 4 = Even parity of(0,0,1,0)=1

Syndrome word =compare the received check bits to
calculated checks bits Of received data
= 0 0 1 1 Received check bits
1 0 1 0 calculated check bits
1 0 0 1
Please note for syndrome word calculation if two check
bits are same then the respective bit in syndrome word
will be 0 if the two check bits are same then the bit in
syndrome word will be1. Thus, syndrome word = 1001,
which implies that 9th bit position in the received 12 bit
information is in error. The 9th bit position corresponds
to 5th data bit. Change this bit to 1 if it is 0 or 0 if it is 1.
Since in the received data it is 0, therefore, change it to1.
Hence, the data was (excluding check bits) received as
01001011. The corrected data is 01011011
the corrected data is same as the transmitted data.

IV. SIMULATION RESULTS
The SPI communication described above is designed
using VHDL and simulated. The simulation results here
shown are about the slave modules of the protocol
which is designed with S.E.A (scalable encryption
algorithms) along with that, error checking capability is
also provided by adding even parity.

M.Jyothi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012,3214-3219

3218

Fig.5. Simulation Results of USART

Fig.6. Simulation Results for LFSR

Fig.7. Simulation Results for Tristate Buffers

Here Fig 5, 6 and 7 shows the results of slaves in SPI
communication protocol. Here the three slaves are
USART, LFSR and tristate buffers. The three are having
there own importance in this design.

V.CONCLUSION
Finally in this paper we design high speed and secured
SPI Communication Protocol with Scalable Encryption
Algorithm (SEA), along with error detection with even
parity. Furthermore this Protocol can be applicable for
different applications like SOC, CPU and DSP
Processors.

REFERENCES
[1] Motorola, "MC68HC II manual”.
[2] Texas Instruments, "MSP430xlxx family users guide”.
[3] Texas Instruments website, www.ti.com.
[4] Peter Kaszas, Akos Szekacs, Tibor Szakall.
[5] "Audio system controlling protocol (ASCP) with AES3,”

unpublished.
[6] Philips's website, www.philips.com.
[7] D.J. Wheeler, R. Needham, TEA, a Tiny Encryption Algorithm,

in the proceedings of FSE 1994, Lecture Notes in Computer
Science, Vol 1008, pp 363-366, Leuven, Belgium, December
1994, Springer- Verlag.

[8] M. Matsui, Linear Cryptanalysis Method for DES Cipher, in the
proceedings of Eurocrypt 1993, Lecture Notes in Computer
Science, vol 765, pp 386-397, Lofthus, Norway, May 1993,
Springer-Verlag.

 [9] J. Daemen, V. Rijmen, the Design of Rijndael, Springer-Verlag,
2001.

[10] FIPS 197, \Advanced Encryption Standard," Federal Information
Processing Stan- dard, NIST, U.S. Dept. of Commerce,
November 26, 2001.

M.Jyothi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012,3214-3219

3219

